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COMPLEMENTED SUBSPACES OF 
(12@!2@-" .)g (1 < p  < oo) 

WITH AN UNCONDITIONAL BASIS' 

BY 

G. SCHECHTMAN 

ABSTRACT 

It is proved that every infinite dimensional complemented subspace of 
(12(~12(~" ")~ (1 < p < oo) with an unconditional basis is isomorphic to one of 
the following four spaces: 12, Ip, 12(~)1~, (l~(~l~(~...)~. 

1. I n t r o d u c t i o n  

One of the basic questions in the isomorphic theory of Banach spaces is the 

following: Given a Banach space X, character ize those infinite dimensional 

Banach spaces which are isomorphic to a complemented  subspace  of X. 

The answer  to this question is known only in few cases,  namely when X is 

isomorphic  to Co, lp(1 < p  __<oo) ([7], [4]) or i~,~)lp~E)"'E)lp. (p~ E[1,oo)o{0},  

1 _-< i _-< n, !o = Co) ([2]) .  

The purpose  of this paper  is to deal with this question for  X =  

(12(~12@. • .)p (1 < p < oo). The interest in studying this space s tems f rom the 

fact  that it is a complemented  subspace  of both Lp and C~ (see [1] for  definition 

and propert ies  of  Cp). 

It  is very easy  to check that 12, Iv, 12@lp and (lx@12(~)...)~, are isomorphic to 

complemented  subspaces  of (12@12(~...)p. It seems that there are no more 

isomorphic  types of  complemented  subspaces  of ( l ,@12@. . . )p .  In this paper  we 

show that this is the case if we consider only subspaces  with unconditional 

basis. Recall in this connect ion that it is still an open problem whether  there are 

complemented  subspaces  of spaces with an unconditional basis which fail to 

have such a basis. 

• This is part of the author's Ph.D. thesis written at the Hebrew University of Jerusalem under 
the supervision of Professor J. Lindenstrauss. The author wishes to thank Professor Lindenstrauss 
for his interest and encouragement. 
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THEOREM. Let X be an infinite dimensional complemented subspace of 
(12~)12~" "), (1 < p < oo) with an unconditional basis. Then, X is isomorphic to 
one of the following four spaces : 12, l~, 12~lp or (12~)12(~.. ")~. 

The proof of the theorem will be carried out in two steps. First, in Section 2, 

we shall make a reduction to the special case where X has a basis whose 

elements are disjointly supported with respect to the usual basis of 

(12Gl2~)" ")~. Then, in Section 3, we shall prove the theorem for this special 

case. 
The notations are standard and those which are not explained here can be 

found in [5]. 

The usual basis of (1201~0"" ")~ will be denoted by (ej.j)7.j.,, i.e., e,.i = 

(0, . .  • ,0 ,~ ,0 , .  • • ,0) (~ stands in the ith place), where ~ is the j th  unit vector 

in 12. 
Thus, for all n, m E N and scalars ~a x" " l, i,j ] i - - I d o l  

" , ~pr"~ I/p 
I I~  ~ a,.,e,., = (,_~ (,.~a,.,] ] 

We denote by Q,, P. and P~, n, k = 1 ,2 , . . .  the projections in ( l ~ ) l ~ . .  ")p 
given by: 

Q,(.~=l ~a,.je'.J) = ~.t ~la'.,e'J 

P,(.~=lj~a,.,e,.J)= ~la".je".J 

P ~ ~ a,.jei.j = a,je,.i . 
\ i = 1  j = l  ' z  

If X is a subspace of Lp = L,(0,  1), then X(12) denotes the Banach space of 

all sequences T =  (f,,f~, . .  .) of functions on (0,1) s.t. /~ E X  for every i = 

1 ,2 , . . .  with respect to coordinatewise addition and scalar multiplication, and 

the norm: 

IIrll=(fo"r )" rl 
The sequence of the Rademacher functions on [0, 1] will be denoted by 

(r,)7=,. 

2. Reduct ion to a special  case 

LEMMA 1. ([11], p. 224). Let X, Y be subspaces of L, (1 _-<p <oo) and let 
T: X -~ Y be a bounded linear operator. Then 7": X(12) --* Y(12) defined by: 
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~(( f , , f~ , . . . ) )  = (Tf , ,  T f2 , . . . )  Y(f,, f2 , ' '  ") E X(I~) 

is bounded ( indeed liFtS = IITII). 

LEMMA 2. Let (x,)7=, be an unconditional basic sequence in Lp (1 _-<p < ~ ) .  
For i, j = 1 ,2 , ' . .  put 

~ = ( 0 , . . . ,  O ,x , ,O , . .  ., O) 

(xi stands in the ]-th place). 
Then ($~)7.j=, is an unconditional basis for [xi]7=~(l=) and there exists a K > 0 

s.t .  

),,5, 1 
- I  - i  a 2 = (1) K ~ < a,.ix , = ,,i x, < K 

I l i , i  ~ I II i 

for all sequences of scalars (a,.~)7.jo, with only lfnitely many elements different 
from zero. 

This lemma was proved in [9] for the case p > 2; the proof here is much 
simpler. 

We shall use the symbol ~ to denote inequalities in both directions with 

constants which do not depend on the coefficients (a,.j)7.j=,. 

PROOF. It is easy to check that (Y{)7.~-j spans [x~]7=,(l~), so it is sufficient to 
prove (1). 

By Khinchine's inequality: 

IL~, a J {  ~ = fo' (.~, ( ~  a"jx'(t ) f )  "'~dt 

fo' fo' r,(s) 
Using the fact that (x~)7-, is an unconditional basic sequence and the 

generalization of Khinchine's inequality for expressions of the form 

fo' fo' [ b,.,r,(u )r,(s ) "duds, 

we get: 
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f0 
(the last inequality follows from Khinchine's inequality and the unconditional- 

ity of (x,)7=,). • 

LEMMA 3. Let (x~)7=, be an unconditional basic sequence in 

(12~)12~" ")p (l =< p < ~) so that Ix,]7=, is complemented in (lz~lz(~)" ")~. Then 

there exists a sequence (y,)7=, in (12~!2~)" ")p disjointly supported with respect 

to (e~.~)~.~=~ such that (y~)7=z is equivalent to (x~)7=~ and [y~]7=~ is complemented 

in (12@12G" ")p. 

PROOF. Let T be the isomorphism from (12(~!2(~" ")p into Lp defined by the 

requirement that Te~.j be the ]th normalized Rademacher function supported 

- 2  , (i,j • .). on [1 -i+~ 1 - 2  -~) = 1,2," 

By Lemmas 1 and 2 [Tx~ ]7=,(12) is complemented in (T((12012•" ")p))(12) and 

( -~)~=,  is an unconditional basis for [Tx,]7=,(12) (where 

T~ = (0 , . . .  ,0, Tx, ,0 , . . .  ,0), Tx~ stands in t h e / t h  place). Thus, [Txl]7=, is also 

complemented in (T((12012~)..-)p))(12). 

It is easy to verify that (T,'d)7=l is equivalent to (Txi)7=, and thus to (x,)7-,, and 

that (T~),=I is disjointly supported with respect to  (Td.~)7.j.k-, (where Tdj  = 

(0 , . . .  ,0, Te,.j,O,... ,0), Tei.~ stands in the kth place). 

Also, by Lemma 2, 

,.j.k=, ( a i~.')~ } ) 

and thus (Tg,.i)7+~=, is equivalent to a permutation of (e~.~)7.j-,. • 

3. Proof of the theorem 

The next lemma is well known and easy to prove (cf., e.g. [8]). 

LEMMA 4. Let (x~)7~, be a normalized unconditional basic sequence in 

(12~)12~" " ")~, then: 

(a) I f  2 < p  < oo (x,)7-~ is equivalent to the usual basis o[12 iff there exists an 
e > 0  and an integer N >- 1 s.t. IIQNx, I]>e for i = 1 ,2 , - - . .  

(b) I[  1 <_- p < 2 and (x,)*?_lis equivalent to the usual basis o[12, then [or any 

e > 0  there exists an integer N >- _ 1 s.t. [ l ( I -QN)x,  l l<e [or i = 1 , 2 , . . . .  

Before we prove the theorem we deal first with a special case. 
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LEMMA 5. Let (x~)7~ be a normalized unconditional basic sequence in 

(12~)!2~). . ")p (1 < p < oo) such that [x, ]~*-t is complemented in (12~)!2~). . ")~ and 

such that no subsequence of  (x,)7~ is equivalent to the usual basis o f  lz. Then 

[x~]~L~ is isomorphic to l~. 

PROOF. For p = 2 the lemma is trivial, thus, by duality it is sufficient to give 

a proof for the case 2 < p < oo. 

By Lemma 3 we can assume without loss of generality that (x~)7_2 is disjointly 

supported with respect to (ei.j)~j=0. 

Let e >0 .  By the assumptions and Lemma 4 for each n there exist only 

finitely many indices i such that ItP.x~ll => 2 - " - e  and thus, for each n there 

exists an integer k. --- 1 s.t. II(P~ -P~'-)x, II < 2 - ' .  e for all i = 1 ,2 , . . .  

Let  us denote Q = X~,  P~'. 

Q is a norm one projection and (Qx~)7-,, ((I - Q)x~)7-, both have uncondi- 

tionality constant one. (Here we use the assumption that (xi)7., are disjointly 

supported with respect to (e~.j)7.j~t. 

We shall show now that if e is small enough then (x~)7-, and (Qx~)7-, are 

equivalent and thus, [x]7=l being an Lep space isomorphic to a subspace of 

Q((lzG120""-)p)  (which is isomorphic to l~), is isomorphic to lp (by [3]). 

It is clear that if XT~,A~x~ converges then ET.,A~Qx, converges, so it is 

sufficient to show that if ETa, A~Qx~ converges then ET~ A~(I - Q)x~ converges. 

The proof of this last fact is an imitation of a proof in [6]. 

Let  P:  ( ! ~ 0 1 2 0 "  ")p o_~ X = [x,];=, be the given projection and let x* 

(12Gl2(~" ")p, (p- '  + q-Z= 1) be given by: 

(2) Px = ~ x*(x)x, ,  Vx E (12Gl~@" "),,. 

Clearly 

(I  - Q ) P Q x .  = ~ x*~(Qx.)(I - Q)x,, 
i - - t  

n = 1 ,2 , . . .  

The operator ( I - Q ) P  can be regarded as an operator from [Qx.]7., into 

[ ( I - Q ) x . ] 7 - , .  The sequences (Qx,)7., and ( ( 1 -  Q)x,)~-t are both uncondi- 

tional basic sequences. Hence the diagonal operator defined by: 

DQx. = x * ( Q x , ) ( l  - Q)x, ,  n = 1 ,2 , . . .  

is bounded ([10] or [5] p. 22). 
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Thus, the convergence of ET~,A,Qx~ implies the convergence of 

E ~ ,  ) t , x * ( Q x . ) ( I -  Q)x,  and it is sufficient to show that inL l x*(Qx,)[  > 0. 

Now, 

x*(Qx,,)+x*((I-Q)x,)  = x*(x~) = 1, n = 1 , 2 , . . . ,  

Ix*~(I-Q)x.l<=llP(I-Q)x~ll<-IIPIl~2-' . e  <½, n = 1 , 2 , . . . ,  

if e <IIPII-'. Thus, Ix*(Qx~)l>~, n = 1 , 2 , . . . .  • 

REMARK 1. More careful examination of the proof of Lemma 3 shows 

that in the proof of the last lemma one can assume without loss of generality 

that x* annihilates the support  of xm for n ~  m. 

Thus, if e is small enough, Rx = ~7~ x*(x)(x*(Qx~))-iQx~ defines a bounded 
onto  oo 

projection R:(12012~)"')~-~[Qx,],=~; in particular, [Ox,],=~ is com- 

plemented in Q((12012~)" ")~) and thus is isomorphic to lp. There is therefore  

no need to use here the results of [3]. 

REMARK 2. Notice that in the assumptions of Lemma 5 (l,~12~)'")p 
cannot  be replaced by Lp, nor can (at least for  p > 2) the assumption that [xi ]7-, 

is complemented be dropped. The counterexample to both these statements is 

the space Xp of Rosenthal (see [8]). 

PROOF OF THE THEOREM. By duality and Lemma 3 one can assume without 

loss of generality that l < p < 2 and that X has a normalized basis (xi)?-~ which 

is disjointly supported with respect  to (eij)7.~l. 

We shall assume in addition that Ix,]7=,--X is not isomorphic to l~, lp or 

l~@lp. 

Let  P:  (12012E)" ")p o°to X denote the given projection and let (x*)~*=~ be 

given by (2). 

Fix e, ~ > 0. First we build by induction a strictly increasing sequence of 

integers 1 -<_ N, < N2 < ' .  ' and a sequence ((x~)7o~)7~ of disjoint subsequences 

of (xl)7~ such that: 

(3) 

(4) 

(5) 

k + l  ~ IIQ,,,(x, ) II<~,  i, k -- 1 ,2 , - . .  

H( I -  Q~k)x~ll < e, i, k = 1 , 2 , . . . ,  

(x ~)7-1 is 2-equivalent to the usual basis of 12, k = 1,2,- • •. 
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By L e m m a  5 and the assumpt ion  that  X is not  i somorphic  to lp one  can find a 

subsequence  (x ~,)7=~ of (x,)7=, which is equivalent  to the usual basis of  12. By  [8], 

L e m m a  10] one  can as sume  (by passing to a subsequence)  that  (x~,)7.~ is 

2-equivalent  to this basis. 

By L e m m a  4 there  exists an N~ such that  II(I- QN,)x',II < ~, i = 1 , 2 , . . - .  

Put ,  

A~ = {ilx* ~- ((xl)*)7~, and IIQ~,x*,ll < ~}. 

No te  that  for  each  N,Q* is ( formally)  the same pro jec t ion  as Q~ but  is acting 

in (12@120".),~, ( p - ~ + q - ' =  1). Thus,  by L e m m a  4 [x*,],~A, and hence  

[X,],,~A, are i somorphic  to l~. By the assumpt ion  that  [x,]7~t is not  i somorphic  

to l..@lp or l~ it fol lows that (x,),~,, conta ins  a subsequence  (x~),=~ which is 

2-equivalent  to the usual basis of  12. 

It fol lows f rom the definition of  A, that  IIQ*~.(x$)*ll < 8, fo r  i = 1 , 2 , . . .  

Assume  that  we have  found  (x l )7o ,  1-<__k =<_l + 1, and N t < N 2 < . "  <Nt, 
such that  (3) and (4) are satisfied for  1 =< k - l, i = 1,2, .  • • and (5) is satisfied fo r  

l _ _ < k _ < l + l .  

Accord ing  to L e m m a  4 one  can find N,+, > Nt so that  (4) holds fo r  k = ! + 1. 

Put, 

, t x , ,  ,,=,,,=, and IIQ*,+,xTIl< 8}. 

By the a rguments  as in the first step, [x,],~A,÷, is not  i somorphic  to lp and is 

infinite dimensional ,  thus there  exists  a subsequence  (x I+2),=, of  (x,)~A,+, which 

is 2-equivalent  to the usual basis of  12. By  the definit ion of  A~+, the s equence  

(xi+2)7=, satisfies (3) fo r  k = l +  2. 

This comple tes  the proof  of  the ex is tence  of  dis joint  subsequences  (x{)7=~, 

j = 1 ,2 , . -  -, of  (x,)7. t and a sequence  N,  < N2 < • • • sat isfying (3), (4) and (5). 

By (3) we have  for  i, k = 1 , 2 , . . .  

1 ( x i + ' ) * ( x ~ + ' )  = ' ~ *  " k ~ l ' * " X ~ ÷ "  = t~N~tx,  / J t ,  1+(xi+')*((I-QN~)xl ÷') 

<_- 8 + I[PIIII(/- QN,)/~+'II 

and hence:  

(6) I[(l - Q~,)x ~*'11 > (1 - ~)I[PI[-'. 

By (4) and (6) we get, if we take e.g. 6 = ½, e = (4lIP[I)- ' ,  that  for  i = 1 , 2 , . . . ,  

k = 2 , 3 , . - . ,  

(7) {I(QN, - QN,_ . )x  Ill ---- I1(I - Q , , , - . ) x  Ill - [l(t - Q , , , ) x  Ill --> (411PIt)-' .  
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Now,  from the assumption that xi, i = 1 , 2 , . . . ,  are disjointly supported it 
a ® ® fol lows that for any sequence of scalars ( ~.k)~-,.k-2 with only finitely many 

elements different from zero: 

~2 "~--1 a'kxki' =< (k~--2 ~'1 a'kx~lll''~''p' II} <2 (k~l (~1 a,,k] y"2~"P 
and 

=> ~a,.k(Q~,,-Q~, 1 
lP\llp 1 ** I ** \pl2\ l /p 

= ,' ) >=(4t[P[{)-'tk~'.2I~.~a2"~' ) ) .  
(We used the fact that, if y~, i = 1,2,.  • •, are disjointly supported elements in 

(12012~" ")p, (1 < p < 2), then 

< < 

Thus, X contains a complemented isomorph of (le(~)12~)'" ")p. This, together 
with the trivial fact that (l,~le@'" ")p is isomorphic to (E~)(12~le~'" ")p)~, 

implies via Pe}czyfiski's decomposition method that X is isomorphic to 

(12~12~" ")p. 
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